skip to main content


Search for: All records

Creators/Authors contains: "Fernandez-Bou, Angel Santiago"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
    Frontline communities of California experience disproportionate social, economic, and environmental injustices, and climate change is exacerbating the root causes of inequity in those areas. Yet, climate adaptation and mitigation strategies often fail to meaningfully address the experience of frontline community stakeholders. Here, we present three challenges, three errors, and three solutions to better integrate frontline communities' needs in climate change research and to create more impactful policies. We base our perspective on our collective firsthand experiences and on scholarship to bridge local knowledge with hydroclimatic research and policymaking. Unawareness of local priorities (Challenge 1) is a consequence of Ignoring local knowledge (Error 1) that can be, in part, resolved with Information exchange and expansion of community-based participatory research (Solution 1). Unequal access to natural resources (Challenge 2) is often due to Top-down decision making (Error 2), but Buffer zones for environmental protection, green areas, air quality, and water security can help achieve environmental justice (Solution 2). Unequal access to public services (Challenge 3) is a historical issue that persists because of System abuse and tokenism (Error 3), and it may be partially resolved with Multi-benefit projects to create socioeconomic and environmental opportunities within frontline communities that include positive externalities for other stakeholders and public service improvements (Solution 3). The path forward in climate change policy decision-making must be grounded in collaboration with frontline community members and practitioners trained in working with vulnerable stakeholders. Addressing co-occurring inequities exacerbated by climate change requires transdisciplinary efforts to identify technical, policy, and engineering solutions. 
    more » « less
  4. Abstract

    Soil CO2concentrations and emissions from tropical forests are modulated seasonally by precipitation. However, subseasonal responses to meteorological events (e.g., storms, drought) are less well known. Here, we present the effects of meteorological variability on short‐term (hours to months) dynamics of soil CO2concentrations and emissions in a Neotropical wet forest. We continuously monitored soil temperature, moisture, and CO2for a three‐year period (2015–2017), encompassing normal conditions, floods, a dry El Niño period, and a hurricane. We used a coupled model (Hydrus‐1D) for soil water propagation, heat transfer, and diffusive gas transport to explain observed soil moisture, soil temperature, and soil CO2concentration responses to meteorology, and we estimated soil CO2efflux with a gradient‐flux model. Then, we predicted changes in soil CO2concentrations and emissions under different warming climate change scenarios. Observed short‐term (hourly to daily) soil CO2concentration responded more to precipitation than to other meteorological variables (including lower pressure during the hurricane). Observed soil CO2failed to exhibit diel patterns (associated with diel temperature fluctuations in drier climates), except during the drier El Niño period. Climate change scenarios showed enhanced soil CO2due to warmer conditions, while precipitation played a critical role in moderating the balance between concentrations and emissions. The scenario with increased precipitation (based on a regional model projection) led to increases of +11% in soil CO2concentrations and +4% in soil CO2emissions. The scenario with decreased precipitation (based on global circulation model projections) resulted in increases of +4% in soil CO2concentrations and +18% in soil CO2emissions, and presented more prominent hot moments in soil CO2outgassing. These findings suggest that soil CO2will increase under warmer climate in tropical wet forests, and precipitation patterns will define the intensity of CO2outgassing hot moments.

     
    more » « less